CTRL+Z for your
Database

Mastering Backup and Recovery in
PostgreSQL

SAKSHI NASHA
Senior Software Engineer
@ Cohesity

$whoami

Developer®™¥
OpenSearch Ambassador
AWS community Builder
Innovator : Hackathons

Athlete at heart: 3 &%~

Why Backup matters?

Why Backup matters?

3% Data Loss Happens

° Hardware failure: disks die, RAID fails

e Human error: accidental deletions, wrong commands (rm -rf /)
[

Cloud outage: even “highly available” systems can go down -> AWS us-east-1 region outage

U Backup = Insurance, Not Luxury
| Key Metrics

e RPO (Recovery Point Objective):

— How much data can we afford to lose? (e.g., last 15 mins of transactions)

e RTO (Recovery Time Objective):
— How long can we afford to be down? (e.g., 1 hour max downtime)

WHEN YOU REALIZE
YOUR LAST BACKUP W
6 MIIN'I'IIS AGO

GHEERS... TO THE
GHOST OF MY DATA

e ety TR ST

e e et PO P

“‘When was the last time you tested restoring your backup?”

“How confident are you that your backups actually restore?

100% confident ,
50% confident

We'll find out when disaster strikes ¢4

“A single DROP DATABASE can cost millions.”

ATABASE DELETED |

StFABASE DELETED

GitLab famously lost production data in 2017 due to a failed rm
-rf and incomplete backups.

A developer accidentally deleted the production
database while attempting to troubleshoot a
high database load caused by spam and a
background job.

GitLab Incident, 2017.

The outage resulted in data loss
and took 18 hours to recover
(RTO)

Famous last words.

Recovery

We're working on recovering right now by using a backup of the database from a staging database.
GitLab.com Status X
@gitlabstatus - Follow
@ Automated

We accidentally deleted production data and might have to
restore from backup. Google Doc with live notes
docs.google.com/document/d/1GC...

2:44 AM - Feb 1, 2017 @)

® 23K @ Reply (2 Copylink

Read 362 replies

When do you usually test your backups?”

@ After someone deletes production data
©® During our annual ‘panic testing day’
@ Every week like responsible adults

@ Testing? What's that?

Few challenges these days?

1. @ “We Have Backups”... But Never Test Them
a. Abackup is only as good as its restore test.

b. Our backup isn’t a backup until you’ve restored it successfully.
2. Rising Data Volumes & Complex Architectures

a. Databases are larger and distributed (microservices, sharding, multi-region).
b. Full backups take too long

3. Human Error & Process Gaps
a. Accidental DROP TABLE, wrong schema migration, or cron misconfigurations.
b. Missing role-based access controls or versioned backup policies.

4. Cloud snapshots # full backups.
a. Provider outages (AWS, GCP) or account misconfigurations can cause loss.
b. Need cross-region, cross-provider copies and verified restore paths.

5. Security & Compliance
a. Backups often stored unencrypted or accessible by too many users.

b. Regulations (GDPR, HIPAA) demand secure, auditable, restorable backups.
c. Need encryption-at-rest, key rotation, and immutable backup storage.

Let's get to know your &)1 Strategy 17

[m] ¥

e wd
"L

[=]

L

.-In

Logical vs Physical : The Two Backup Universes

e Alogical backup saves the data and schema
in a human-readable form, such as SQL
commands

e |t extracts the data using SQL queries.

e # Logical backup
pg_dump mydb > mydb.sql

e # Restore
psql -d mydb -f mydb.sql

Strengths :
° Portable: You can restore it on another version or
server.

e Readable: It's plain text SQL

Weaknesses :
e Slower for large databases
e Doesn’t include transaction logs (no PITR)
e Needs the database to be consistent (no partial
backups during changes)

e A physical backup copies the actual binary files that
PostgreSQL uses to store data

e It's like copying the entire data directory

e # Stop the server and copy data directory
sudo systemctl stop postgresql
cp -r /var/lib/postgresql/15/main /backup/
sudo systemctl start postgresql

e # use pg_basebackup for online backup
pg_basebackup -D /backup -F tar -z -P -U replica

Strengths :

e Faster for large databases.
e Exact copy of the database

e Supports PITR
Weaknesses :

e Not portable: Must be restored on the same version & OS.
e Large files: Includes everything

e More complex restore process (especially for PITR).

How Logical and Physical Backups Are Used %

Together =

e

DATABASE

Imagine you're a database admin for an online shopping website (say, “ShopZone”). ADMINISTRATOR
You need to make sure no data is lost even if a developer deletes a table or the server crashes.

Logical Backup (Export schema
+ data)

e Once a week (say Sunday night), you create
a logical dump
e This backup contains SQL statements that
recreate tables and data.
"4 Purpose:
If you ever:
e Upgrade PostgreSQL to a newer version,
° Move to a new server,
e Orjust need to recover a specific table you
can easily restore

J- WEEKLY

Physical Backup (Full system

snhapshot)
e You set up a nightly physical backup at 2
AM when traffic is low.
e You have a complete copy of the database
cluster with WAL logs
"4 Purpose:
If the database crashes or data gets corrupted, you
can restore the exact state at any moment before
the crash (PITR — Point-In-Time Recovery).

% DAILY

Going Deeper : Full vs Incremental

“Don’t start from zero every night”

Full = complete copy

pg_basebackup, pg_dump (logical backup per database)

Incremental = store only changed data since the last full or incremental backup.
Trade-offs in speed vs complexity

PostgreSQL 17 (September 26 2024) : pg basebackup --incremental

New helper tool: pg _combinebackup (to rebuild a full backup from incremental

layers)

Use Case Example:
Take a weekly full backup, and daily incremental backups — combine them with
WAL archiving for full PITR capability.

Write-Ahead Logging (WAL)

“The Database’s Black Box Recorder”

e Every change written to WAL before data files

e Enables crash recovery and Point-in-Time Recovery (PITR)

e Atall times, PostgreSQL maintains a write ahead log (WAL) in the pg_wal/
subdirectory of the cluster's data directory.

DROP TABLE users;

Database: | don’t
know that shortcut

Interesting Fact!!

“In PostgreSQL, your database is writing a mini
backup every second.”

The WAL (Write Ahead Log) is a continuous time machine
of your data , most people don’t realize PostgreSQL is
already your partial CTRL+Z.

PostgreSQL WAL
files be like:

Continuous archiving,
continuous anxiety.

& Quick Check

What's really the difference between
Recovery and Restore ?

What's really the difference between
Recovery and Restore ?

e Recover = get back to working
e Restore = bring back what was lost or how it
used to be

e Recovery:
You forgot your password or used incorrect pwd
more than 3 times You go into Recovery Mode to
fix it so you can unlock the phone

<~ You’re recovering the phone : making it
functional.

iPhone Unavailable

e Restore:
After fixing the phone, you use a backup to restore
your photos, contacts, and settings.
<~ You're restoring the old data and setup.

Continuous Archiving & PITR

“Time Travel for Databases”

Combines a base backup with continuous archiving of WAL (Write-Ahead Log) files.
Allows restoring the database to any specific point in time.
Enables crash recovery and Point-in-Time Recovery (PITR)
Steps to configure
a. Enable WAL archiving in postgresql.conf:
wal_level = replica
archive_mode = on
archive_command = ‘cp %p /var/lib/postgresql/wal_archive/%f",
b. Take a base backup:
pg_basebackup -D /backup -F tar -z ...
c. Restore to a point in time:
restore_command = ‘cp /var/lib/postgresql/wal _archive/%f %p'
recovery_target _time = '2025-10-23 12:00:00

Continuous Archiving & PITR

“Time Travel for Databases”

Note

pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used

as part of a continuous-archiving solution. Such dumps are /ogical and do not contain
enough information to be used by WAL replay.

%' 1. Template Database Cross-Contamination

PostgreSQL physically copies data files from the
template database (template1) when creating a new
DB.

If CREATE DATABASE runs during a base backup and
templatel is modified mid-way:

— those changes can leak into the new DB after
recovery.

Result: inconsistent or duplicated data in databases
created during backup.

Best Practice:

+ Don’'t modify templatel (or any template DB)
while a base backup is in progress.

- Analogy: “Never reshape the cookie mold while
copying the dough.”

Key Caveats for Continuous Archiving

B 2. Tablespace Path Replay Issue

CREATE TABLESPACE is WAL-logged with an
absolute path (e.g., /mnt/fastdisk/pg_tblspc).
During recovery, WAL replay will try to recreate that
exact path — even on a different server or data
directory.
Risks:

o Path may not exist — recovery failure.

o Path exists but points to an old location — data

overwrite.

Best Practice:

= Always take a new base backup after creating or
dropping tablespaces.
W Analogy: “WAL is like a moving truck with a fixed
delivery address — if you move but don’t update the
address, it delivers boxes to the old house.”

What's New in PostgreSQL 17 (September 26 2024)

“Smarter Backups, Easier Recovery”

Incremental Base Backups with pg_basebackup --incremental — only
changed files since last backup

pg_combinebackup — merge full + incremental into a new baseline
pg_dump -filter — selective backup by table/schema

Performance: faster restore checksums, parallelism improvements
Security: client-side encryption for base backups

<~ Makes PITR and cloud storage backups far more efficient.

What’S NeW |n POStgreSQL 18 (September 25 2025)

“Resilience & Observability Boosts”

pg_basebackup --resume — continue failed backups
Improved monitoring (pg_stat_io, WAL stats)

Checkpointer performance: faster crash recovery
Data-corruption detection improvements

Enhanced logical replication: large transactions, DDL support

Backups aren’t just about having
copies - they’re about having
recoverable, resilient, and redundant

copies.

Real-World Backup Strategy

“Layered Protection: The 3-2-1 Rule”

3 2

Production database Store copies on two different kinds of

On-site backup storage to avoid single point of failure..
(pg_basebackup + WAL)

Off-site/cloud replica or 1) ocal disk + network storage, OR
archive.

25SD + object storage (S3, GCS, etc.)

Combine logical + physical + PITR

Keep one copy in a different physical
location for disaster recovery.

_1Joff-site backup server, cloud bucket,
or standby in another data center.

& CTRL+Z Readiness” list

Can you really undo your next disaster?

Test Your Backups — Don’t Just Take Them
Automate Daily & Weekly Backups
Layered Protection — The “3-2-1Rule”
Pick the Right Strategy for Your Use Case
one size doesn't fit all.
Choose between logical, physical, or
incremental depending on RPO/RTO targets

I. Know the Caveats

0G € Or. 10
ProgrammerHumor.io

“True CTRL + Z readiness isn’t about
having backups -

it’s about knowing they’ll work when you
need them.”

Future References :

“‘PostgreSQL’s mascot (Slonik) is an elephant
because it never forgets...

Elephant vs Database

PostgreSQL

Remembers everything
(even under load)

& Slonik
Elephants never forget

That's why PostgreSQL's mascot is Slonik —
strong, smart, and unforgettable.

unless you forget to back it up.”

Feedback

\\\.. e
i i

$ 3, o 8500 of

rJ#{'»?

Thank you

Connect with mel)

b

