
CTRL+Z for your
Database

SAKSHI NASHA
Senior Software Engineer

@ Cohesity

Mastering Backup and Recovery in
PostgreSQL

$whoami

● Developer󰟲
● OpenSearch Ambassador
● AWS community Builder ☁
● Innovator : Hackathons
● Athlete at heart : 󰻂🏀⚽🏸

Why Backup matters?

Why Backup matters?

💥 Data Loss Happens

● Hardware failure: disks die, RAID fails
● Human error: accidental deletions, wrong commands (rm -rf /)
● Cloud outage: even “highly available” systems can go down -> AWS us-east-1 region outage

🛡 Backup = Insurance, Not Luxury

📊 Key Metrics

● RPO (Recovery Point Objective):
 → How much data can we afford to lose? (e.g., last 15 mins of transactions)

● RTO (Recovery Time Objective):
 → How long can we afford to be down? (e.g., 1 hour max downtime)

Why Backup matters?

●

“When was the last time you tested restoring your backup?”

100% confident ,
 50% confident

We’ll find out when disaster strikes 🔥

“How confident are you that your backups actually restore?

GitLab famously lost production data in 2017 due to a failed rm
-rf and incomplete backups.

A developer accidentally deleted the production
database while attempting to troubleshoot a
high database load caused by spam and a
background job.

“A single DROP DATABASE can cost millions.”

The outage resulted in data loss
and took 18 hours to recover
(RTO)

🅐 After someone deletes production data
🅑 During our annual ‘panic testing day’
🅒 Every week like responsible adults
🅓 Testing? What’s that?

When do you usually test your backups?”

Few challenges these days?

1. 💣 “We Have Backups”… But Never Test Them
a. A backup is only as good as its restore test.
b. Our backup isn’t a backup until you’ve restored it successfully.

2. Rising Data Volumes & Complex Architectures
a. Databases are larger and distributed (microservices, sharding, multi-region).
b. Full backups take too long

3. Human Error & Process Gaps
a. Accidental DROP TABLE, wrong schema migration, or cron misconfigurations.
b. Missing role-based access controls or versioned backup policies.

4. Cloud snapshots ≠ full backups.
a. Provider outages (AWS, GCP) or account misconfigurations can cause loss.
b. Need cross-region, cross-provider copies and verified restore paths.

5. Security & Compliance
a. Backups often stored unencrypted or accessible by too many users.
b. Regulations (GDPR, HIPAA) demand secure, auditable, restorable backups.
c. Need encryption-at-rest, key rotation, and immutable backup storage.

Let's get to know your 🔙🆙 Strategy ⁉

Logical vs Physical : The Two Backup Universes
● A logical backup saves the data and schema

in a human-readable form, such as SQL
commands

● It extracts the data using SQL queries.
● # Logical backup

pg_dump mydb > mydb.sql
● # Restore

psql -d mydb -f mydb.sql

Strengths :
● Portable: You can restore it on another version or

server.
● Readable: It’s plain text SQL

Weaknesses :
● Slower for large databases
● Doesn’t include transaction logs (no PITR)
● Needs the database to be consistent (no partial

backups during changes)

● A physical backup copies the actual binary files that
PostgreSQL uses to store data

● It’s like copying the entire data directory
● # Stop the server and copy data directory

 sudo systemctl stop postgresql
 cp -r /var/lib/postgresql/15/main /backup/
 sudo systemctl start postgresql

● # use pg_basebackup for online backup
pg_basebackup -D /backup -F tar -z -P -U replica

Strengths :
● Faster for large databases.
● Exact copy of the database
● Supports PITR

Weaknesses :
● Not portable: Must be restored on the same version & OS.
● Large files: Includes everything
● More complex restore process (especially for PITR).

How Logical and Physical Backups Are Used
Together 🤝

Imagine you’re a database admin for an online shopping website (say, “ShopZone”).
You need to make sure no data is lost even if a developer deletes a table or the server crashes.

Logical Backup (Export schema
+ data)

● Once a week (say Sunday night), you create
a logical dump

● This backup contains SQL statements that
recreate tables and data.

✅ Purpose:
If you ever:

● Upgrade PostgreSQL to a newer version,
● Move to a new server,
● Or just need to recover a specific table you

can easily restore

Physical Backup (Full system
snapshot)

● You set up a nightly physical backup at 2
AM when traffic is low.

● You have a complete copy of the database
cluster with WAL logs

✅ Purpose:
If the database crashes or data gets corrupted, you
can restore the exact state at any moment before
the crash (PITR — Point-In-Time Recovery).

⚙ WEEKLY 🧩 DAILY

Going Deeper : Full vs Incremental
“Don’t start from zero every night”

● Full = complete copy
● pg_basebackup, pg_dump (logical backup per database)
● Incremental = store only changed data since the last full or incremental backup.
● Trade-offs in speed vs complexity
● PostgreSQL 17 (September 26 2024) : pg_basebackup --incremental

● New helper tool: pg_combinebackup (to rebuild a full backup from incremental

layers)

Use Case Example:
Take a weekly full backup, and daily incremental backups — combine them with

WAL archiving for full PITR capability.

Write-Ahead Logging (WAL)
“The Database’s Black Box Recorder”

● Every change written to WAL before data files
● Enables crash recovery and Point-in-Time Recovery (PITR)
● At all times, PostgreSQL maintains a write ahead log (WAL) in the pg_wal/

subdirectory of the cluster's data directory.

Interesting Fact!!

● “In PostgreSQL, your database is writing a mini
backup every second.”

The WAL (Write Ahead Log) is a continuous time machine
of your data , most people don’t realize PostgreSQL is
already your partial CTRL+Z.

🔷 Quick Check

What’s really the difference between
Recovery and Restore ?

What’s really the difference between
Recovery and Restore ?

● Recover = get back to working
● Restore = bring back what was lost or how it

used to be

● Recovery:
 You forgot your password or used incorrect pwd
more than 3 times You go into Recovery Mode to
fix it so you can unlock the phone
 👉 You’re recovering the phone : making it
functional.

● Restore:
 After fixing the phone, you use a backup to restore
your photos, contacts, and settings.
 👉 You’re restoring the old data and setup.

Continuous Archiving & PITR
“Time Travel for Databases”

● Combines a base backup with continuous archiving of WAL (Write-Ahead Log) files.
● Allows restoring the database to any specific point in time.
● Enables crash recovery and Point-in-Time Recovery (PITR)
● Steps to configure

a. Enable WAL archiving in postgresql.conf:
wal_level = replica
archive_mode = on
archive_command = 'cp %p /var/lib/postgresql/wal_archive/%f'.

b. Take a base backup:
pg_basebackup -D /backup -F tar -z …

c. Restore to a point in time:
restore_command = 'cp /var/lib/postgresql/wal_archive/%f %p'
recovery_target_time = '2025-10-23 12:00:00

Continuous Archiving & PITR
“Time Travel for Databases”

Key Caveats for Continuous Archiving

🧩 1. Template Database Cross-Contamination

● PostgreSQL physically copies data files from the
template database (template1) when creating a new
DB.

● If CREATE DATABASE runs during a base backup and
template1 is modified mid-way:
 → those changes can leak into the new DB after
recovery.
Result: inconsistent or duplicated data in databases
created during backup.

● Best Practice:
 🔒 Don’t modify template1 (or any template DB)
while a base backup is in progress.
🧁 Analogy: “Never reshape the cookie mold while
copying the dough.”

🗄 2. Tablespace Path Replay Issue

● CREATE TABLESPACE is WAL-logged with an
absolute path (e.g., /mnt/fastdisk/pg_tblspc).

● During recovery, WAL replay will try to recreate that
exact path — even on a different server or data
directory.

● Risks:
○ Path may not exist → recovery failure.
○ Path exists but points to an old location → data

overwrite.

● Best Practice:
 🧠 Always take a new base backup after creating or
dropping tablespaces.
📦 Analogy: “WAL is like a moving truck with a fixed
delivery address — if you move but don’t update the
address, it delivers boxes to the old house.”

What’s New in PostgreSQL 17 (September 26 2024)

“Smarter Backups, Easier Recovery”

● Incremental Base Backups with pg_basebackup --incremental → only
changed files since last backup

● pg_combinebackup → merge full + incremental into a new baseline
● pg_dump --filter → selective backup by table/schema
● Performance: faster restore checksums, parallelism improvements
● Security: client-side encryption for base backups
👉 Makes PITR and cloud storage backups far more efficient.

What’s New in PostgreSQL 18 (September 25 2025)

“Resilience & Observability Boosts”

● pg_basebackup --resume — continue failed backups
● Improved monitoring (pg_stat_io, WAL stats)
● Checkpointer performance: faster crash recovery
● Data-corruption detection improvements
● Enhanced logical replication: large transactions, DDL support

Backups aren’t just about having
copies - they’re about having
recoverable, resilient, and redundant
copies.

Real-World Backup Strategy
“Layered Protection: The 3-2-1 Rule”

Combine logical + physical + PITR

COPIES MEDIA TYPES OFFSITE

1⃣ Production database
2⃣ On-site backup
(pg_basebackup + WAL)
3⃣ Off-site/cloud replica or
archive.

Store copies on two different kinds of
storage to avoid single point of failure..

1⃣Local disk + network storage, OR

2⃣SSD + object storage (S3, GCS, etc.)

Keep one copy in a different physical
location for disaster recovery.

1⃣Off-site backup server, cloud bucket,
or standby in another data center.

🐘🟰󰬿

🔷 CTRL+Z Readiness” list

✅ Test Your Backups — Don’t Just Take Them
✅ Automate Daily & Weekly Backups
✅ Layered Protection — The “3-2-1 Rule”
✅ Pick the Right Strategy for Your Use Case

one size doesn’t fit all.
Choose between logical, physical, or

incremental depending on RPO/RTO targets

⚠ Know the Caveats

Can you really undo your next disaster?

“True CTRL + Z readiness isn’t about
having backups -
 it’s about knowing they’ll work when you
need them.”

Future References :

“PostgreSQL’s mascot (Slonik) is an elephant
because it never forgets…

unless you forget to back it up.”

Feedback

Thank you

Connect with me󰢦

